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PREFACE

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports
public interest energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy services and
products to the marketplace.

The PIER Program conducts public interest research, development, and demonstration (RD&D)
projects to benefit California.

The PIER Program strives to conduct the most promising public interest energy research by
partnering with RD&D entities, including individuals, businesses, utilities, and public or
private research institutions.

PIER funding efforts focus on the following RD&D program areas:

Buildings End-Use Energy Efficiency

Energy Innovations Small Grants

e Energy-Related Environmental Research

e Energy Systems Integration

e Environmentally Preferred Advanced Generation

e Industrial/Agricultural/Water End-Use Energy Efficiency
¢ Renewable Energy Technologies

e Transportation

Climate Forecasts for Improving Management of Energy and Hydropower Resources in the Western UL.S.
is the final report for the Evaluation of Potential for Improved Co-Management of California
and Pacific Northwest Water and Hydropower Resources project (contract number 500-02-004,
work authorization 039) conducted by the University of California and the University of
Washington. The information from this project contributes to PIER’s Energy-Related
Environmental Research Program.

When the source of a table, figure or photo is not otherwise credited, it is the work of the author
of the report.

For more information about the PIER Program, please visit the Energy Commission’s website at
www.energy.ca.gov/pier or contact the Energy Commission at 916-327-1551.
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ABSTRACT

This project addressed the feasibility of using climate information and seasonal climate forecasts
to better manage the western regional electrical generating system. Several questions were
addressed. Can temperature and temperature-related electrical energy demand be modeled and
forecast with sufficient accuracy to support operational planning and scenario development
with seasonal lead times? Can climatic patterns related to heat waves in California provide the
basis for forecasts? Can hydropower resources be coordinated across the region’s three major
river basins to provide low-cost, reliable energy during peak demand periods?

Historical analyses of maximum temperatures, heat waves and stream flow indicated that large-
scale climatic patterns could support conditional forecasts on seasonal time scales, as well as
scenario analyses for regional planning. Since temperature affects electricity load, researchers
demonstrated how energy loads can be modeled as a function of temperature with predictive
accuracy and described tools available to construct probabilistic forecasts and scenarios.
Modifications to Western Electricity Coordinating Council planning cases that model electricity
generation in response to temperature and stream flow scenarios were also demonstrated.

The project described how patterns and trends in sea surface temperatures associated with heat
waves could provide a basis for extended forecasts. Historical data, paleo-reconstructions and
modeling suggested that a coherent climate signal in stream flow across the major river basins
of the region may provide limited opportunities for sharing hydropower resources across those
basins. A case study with the California Department of Water Resources demonstrated ways to
confidently apply seasonal climate forecasts to water resource management.

Keywords: Temperature forecasts, Energy demand, Heat waves, Pacific Northwest, stream flow
reconstructions, Columbia River basin, Sacramento San Joaquin basins, Colorado River basin,
Climate variability, Hydropower production



EXECUTIVE SUMMARY
Introduction

Researchers have recently made substantial progress in developing models to forecast
temperatures at seasonal lead times. These forecasts have been for specified temperatures (such
as mean or maximum) sampled over some historical reference period. These forecasts are not
well suited to energy system planning and management applications because they typically
result in one number for an entire season. Making forecast data usable to energy systems that
operate continuously requires daily, hourly and shorter decision times. A seasonal average
must be “downscaled” into information about daily temperatures.

Hydropower is an important energy resource in the western United States. It provides a
relatively inexpensive and renewable alternative to fossil fuel-based technologies such as
natural gas turbines. Water managers in the western United States have long faced the
challenge of meeting a variety of demands with limited and uncertain supplies. Seasonal
climate outlooks offer the potential to improve decision making by extending the planning
horizon for resource managers.

Project Purpose

This project explored the feasibility of using seasonal climate forecasts to help manage the
western regional electrical generating system. This research attempted to answer several
questions: Can temperature and the temperature-related variability in electrical energy demand
be forecast with sufficient accuracy to support operational planning and scenario development
with seasonal lead times? Can hydropower resources be coordinated across the region’s three
major river basins to provide low-cost reliable energy during peak demand periods? This
project addressed these questions in three separate research efforts: (1) temperature sensitivity
of energy load; (2) climate-driven variation in hydropower resources; and (3) a stakeholder
partnership with the California Department of Water Resources.

The temperature sensitivity of energy load research attempted to forecast the parameters of
maximum daily electricity load models by fitting statistical probability models to maximum
daily temperature data. The researchers” hypothesis assumed that maximum daily electricity
load varies because of temperature variability and calendar effects unrelated to climate, such as
weekends and holidays. Researchers tested this hypothesis by estimating models for maximum
daily electricity load as a function of these two factors in the Northwest, Northern California,
Southern California, and Southwest regions. Developing estimating models for maximum daily
electricity load posed a challenge because the relationship between load and temperature is
nonlinear, and because the data used are not normally distributed. Parametric probability
forecasts of maximum daily temperature are well suited to planning applications for energy
management. Rather than yielding one statistic to describe temperature over an entire season,
this approach allowed planners to generate daily maximum temperature samples for a coming
season stochastically, and to assign probabilities to planning scenarios of interest.



The goal of the climate-driven variation in hydropower resources research was to improve the
use of seasonal climate forecasts by water resource managers, who usually cite low levels of
accuracy and difficulties with interpreting the data as reasons for not using climate forecasts.
Many managers also say climate forecasts haven’t demonstrated an application to their work.
This research was intended to make such forecasts easier to use.

One goal of the stakeholder partnership with the California Department of Water Resources
(DWR) was to make seasonal forecast information from the National Oceanic and Atmospheric
Administration easier to understand and more widely used. Another goal was assessing how
seasonal climate forecasts can improve seasonal stream flow forecasts and lead to more efficient
water management, helping to reduce the state’s vulnerability to drought. The project
conducted a case study with DWR to accomplish these goals. DWR manages water for the
nation’s most populous state, which also includes the largest irrigated agricultural industry.
California also arguably has the most publicized conflicts over water allocation in the country.
This project focused on implementing existing products from previous and ongoing research
funded by the National Oceanic and Atmospheric Administration, rather than developing new
technologies.

Project Results

For the temperature sensitivity of energy loads research, the project team determined the
correct specification for a model that estimated daily electricity load. They created regression
models that accounted for 80 to 90 percent of the variability in maximum daily load in the
Northwest, Northern California, Southern California, and Southwest regions. Because of the
strong relationship between temperature and electrical load, forecasts of temperature may be
useful for planning electricity generation and demand management.

The forecast distribution incorporated temperature statistics from past seasons with information
about climate variability from year to year, such as temperature persistence, sea surface
temperatures, and soil moisture. Establishing forecast parameters made it possible to predict
the distribution of maximum daily temperature. Repeated random draws from these
distributions can be used to generate temperature samples for scenario analysis. These
distributions can also be used to generate a time series of probabilities that temperatures will
exceed a certain threshold. Researchers calculated the probability per day of exceeding an
arbitrary temperature threshold in Northern California (32 degrees Celsius) for each summer
from 1950 to 2003 and then compared it to the observed frequency of temperature extremes.

Heat waves lasting several days can affect energy loads more than models of concurrent peak
demand and peak temperature would predict. This report described relationships that could
form the basis for more accurately forecasting heat waves in California. Observation showed
that California heat waves are becoming more humid, with higher nighttime temperatures. The
frequency and magnitude of nighttime heat waves has clearly and steadily been on the rise, and
the trend appeared to be accelerating. Out of the largest six nighttime events occurring over
almost six decades between 1948 and 2006, three have occurred in the last six years. The
magnitude and timing of these changes impact both public health and energy demand.



Californians are less used to humid heat than dry heat, so they tend to use cooling more often at
night and to set thermostats to lower temperatures during the day.

Recent research indicated that California heat waves vary from year to year and over even
longer periods because of changing sea surface temperatures in the North Pacific, especially off
the coast of Baja California. Whether a heat wave will produce high daytime or nighttime
temperatures depends on the availability of an unusual upwind source of moisture. Warmer sea
temperatures to the west of Baja California seem to make this moisture available. Global climate
change models predict higher temperatures in the world’s oceans, which poses another set of
questions:

e How much of the warming of the sea near Baja is caused by global warming?

e Can forecasters skillfully predict heat wave activity in California based on surface
temperatures of the Pacific Ocean?

¢ Can they expect the heat wave trends they have observed to continue?

¢ How much of the climb in high nighttime temperatures now being witnessed over
California and Nevada is a regional expression of global warming?

Answering these questions unequivocally was beyond the scope of this study and requires an
augmented set of tools, including dynamical modeling. The authors intended to address these
questions in future studies. The results of this study were fully consistent with global warming.
They provided a plausible scenario of a future California with more, hotter, more extensive and
durable humid nighttime heat waves.

The climate-driven variation in hydropower resources project ran three reservoir simulation
models for the Columbia River basin, Sacramento San Joaquin basins, and Colorado River
basin. It used long-term temperature and precipitation data sets from 1916-2003 to drive the
Variable Infiltration Capacity hydrologic simulation model, which simulated monthly stream
flows over that 87-year period. While the three river basins examined varied in climate, water
resource infrastructure and management policy, changes in their stream flows and hydroelectric
output since the 1970s largely mirrored changes in their precipitation amounts during cool
seasons.

In the western United States, hydropower resources were strongly coupled to variations in cool
season precipitation, which accounted for approximately 85 percent of the variance in annual
stream flow in the Columbia River basin, 90 percent in the Sacramento San Joaquin basins, and
55 percent in the Colorado River basin. Persistent changes in precipitation during the cool
season have been observed since the mid-1970s. These changes have made the western U.S.
more vulnerable to energy shortages because droughts during that time period tended to be
longer, more intense, and similar from region to region. Conditions were also similar during
times of high flows, when abundant hydropower resources were available throughout the West.

A study of historical climate records from 1858 to 1977 suggested that the pattern of variability
observed from 1977 to 2003 is unusual when compared to events of the past 150 years or so.



Longer paleoclimatic records for the Sacramento San Joaquin basins and the Colorado River
basin showed that similar patterns have occurred at most three times in the last 500 years at
roughly 200-year intervals.

Variations in cool season precipitation, stream flow and hydropower resources coincided with
predictions of global climate change. It was unclear whether these changes were related to
global warming, or if they were simply temporary, natural variations in precipitation that were
unusual in the earlier part of the 20th century. Planners may need to alter the way they manage
energy and water systems if these changes were in fact natural and predictable in order to cope
with the altered variability.

The stakeholder partnership with the DWR focused on two tasks. Statistical analysis established
the accuracy of climate forecasts and correlated that data with existing water year information.
Researchers then worked with DWR staff to identify decision makers who could benefit from
these forecasts. Seasonal forecasts and historical data together can support integrated regional
scenario analyses. Relating maximum temperatures, heat waves and stream data to climate can
produce valuable planning and scenario analyses for the energy sector in the western United
States.

The temperature sensitivity of energy loads research set the stage for future projects to test if
accurate seasonal forecasts of heat wave activity in California can be based on nearby sea
surface temperature patterns. Such forecasting could help determine if trends in heat wave
activity will continue, which would have major implications on future electrical load. Such
forecasts depend on predicting the long-term sea surface temperatures off the coast of Baja
California and analyzing the impact of global warming through the use of dynamical modeling.
This in turn will help clarify whether the climb in nocturnal heat waves now being witnessed
over California and Nevada is a regional expression of a global process.

The climate-driven variation in hydropower resources research demonstrated the challenges of
using climate forecasting to manage hydropower resources. Future research must clarify
whether changes in cool season precipitation, stream flow and hydropower resources were
related to global warming or were simply natural variations that have been unusual in the
earlier parts of the 20th century. Changes in energy and water management may be needed to
cope with the altered variability if these changes were systematic in nature.

The work with the DWR identified DWR decision makers that could benefit from the forecasts
developed in this work. It is recommended that these forecasts be used to better manage water
resources at the California DWR.

Project Benefits

This research developed models for predicting maximum daily electricity load as a function of
(1) variability in temperature and (2) calendar effects unrelated to climate, such as weekends
and holidays. This work will support energy system planning and management in regions
including Northern California and Southern California. A second benefit of this work is the
development of simulation models for the Columbia River basin, Sacramento San Joaquin
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basins, and Colorado River basin, which will help improve decision making by water resource
managers by extending their planning horizon. Comprehensive statistical analysis conducted
with the DWR helped to correlate climate forecasts with water year classifications, as well as

identifying key decision points and decision makers at DWR who could benefit from the
research.






CHAPTER 1;
Introduction

This research analyzes several factors related to the feasibility of using seasonal climate
forecasts to support management of the western regional electrical generating system. This
research supports analyses of several questions: can temperature and temperature-related
variability in electrical energy demand be forecast with sufficient skill to support operational
planning and scenario development at seasonal lead times? Can hydropower resources be
coordinated across the region’s three major river basins to provide low-cost reliable energy
during peak demand periods?

1.1 Energy Load Indices

Detailed electrical load data are generally proprietary and not publicly available. The studies
described here required credible indices of western U.S. electricity demand that could be used
to demonstrate the utility of climate applications. Four suitable indices were derived from
FERC 714 reports for the Northwest, Northern California, Southern California and the
Southwest. It was necessary to aggregate loads across utilities, because loads reported by one
utility in one year’s FERC 714 reporting can, and often are, shifted to another nearby utility’s
report in one or more subsequent years. A daily time series that could serve as an index of
daily, seasonal, and interannual variability in load for each region was derived from the hourly
data reported by selected utilities in each region for 1993-1999. Data from the year 2000 and
immediately after were available, but were not used because of abrupt changes in reported
loads due to the California energy crisis in 2000 and to industry-related demand in the
Northwest. The daily maximum aggregate load for each region was detrended and scaled.
Trends observed in the data were assumed to result from growth in demand due to changes in
population, demography, development, and so forth. While there has been a pronounced trend
in temperature in the western U.S. in recent decades, these were not likely to be large within the
1993 - 1999 sample. The result was four regional indices of daily peak energy loads that could
then be related to variability in temperatures.

1.2 Temperature Sensitivity of Energy Load

The working hypothesis employed here is that variability in maximum daily electricity load is
primarily driven by (1) variability in temperature and (2) calendar effects unrelated to climate
(weekends and holidays). This hypothesis was tested by estimating models for maximum daily
electricity load for each region defined above as functions of these two factors. These models
are useful for motivating interest in temperature forecasts. This and other applications
described here use a long-term daily-time-step gridded temperature data set. While only 7
years of load data were employed, using a long-term temperature data set to create four
regional daily maximum temperature indices from 1950 — 2003 facilitated production of
experimental temperature forecast products and models compatible with our load-temperature
model.



Estimating models for maximum daily electricity load pose an interesting challenge because the
relationship between load and temperature is nonlinear, and because the data used are not
normally distributed. The correct specification was determined to be a nonlinear fit with semi-
parametric smooth functions (piecewise polynomials) and skewed, leptokurtic residuals. Using
just the polynomial transformation of daily maximum temperature and a factor for weekend
versus workweek days, regression models were estimated that accounted for 80-90 percent of
the variability in maximum daily load in each region. The strong relationship between
temperature and electrical load indicates that skillful forecasts of temperature may be useful for
planning related to electricity generation and demand management.

1.3 Parametric Temperature Forecasts

Recent research has made substantial progress in developing models capable of forecasting
temperatures at seasonal lead times with significant skill. These forecasts have been for
specified percentiles of temperature (such as, mean (50" percentile), 90™ percentile, maximum
(100t percentile) and so forth.) sampled over some historical reference period. These forecasts
can be spatially explicit for gridded or station temperatures, or aggregated over a region. The
form of these forecasts is not well suited to energy system planning and management
applications, however, because they result typically in one number for an entire season. A
manager planning operations for a continuously operated system with daily, hourly and shorter
decision time horizons may need some method to “downscale” a seasonal average into useful
information about daily temperatures to make practical use of such a forecast, which might
prove as or more challenging a task than producing the original forecast in the first place.

This work examines the potential for fitting statistical probability models to maximum daily
temperature data, and then forecasting the parameters that describe those models. Parametric
probability forecasts for maximum daily temperature are well suited to planning applications
for energy management. The basic approach is to fit an appropriate probability distribution to
the temperature data to be forecast, and then to forecast the distribution parameters at seasonal
lead times. Rather than yielding one statistic to describe temperature over an entire season, this
approach allows planners to generate daily maximum temperature samples for a coming season
stochastically, and to assign probabilities to planning scenarios of interest.

Like a climatology, the forecast distribution reflects knowledge about the statistical properties
of temperatures observed in past seasons, while also incorporating a forecast reflecting
available knowledge regarding expected interannual variability in climate (for example, a
forecast based on persistence, sea surface temperatures, and soil moisture). The form of the
forecast is also well suited to applications where knowledge of critical planning thresholds may
be proprietary, since in many cases it does not require end users to specify a priori the
temperature threshold of interest.

With the forecast parameters, it is possible to describe a forecast distribution of maximum daily
temperature. Repeated random draws from these distributions can be used to generate
temperature samples for scenario analysis. These distributions can also be used to generate a
time series of probabilities of exceeding a temperature threshold of interest. For example, the
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authors calculated the probability per day of exceeding an arbitrary temperature threshold in
Northern California (32 degrees Celsius) for each summer from 1950 to 2003 and compared it to
the observed frequency of temperature extremes. The R-squared and cross-validated R-squared
for this time series were 0.36 and 0.32. Models like these can be a key ingredient for modeling
the effects of climatic variations on the western energy grid.

1.4 Climatic Indicators for Humid Nighttime Heat Waves

Multi-day runs of high temperatures can have a greater impact on energy loads than would be
predicted by models of concurrent peak demand and peak temperature. Initial work reported
here describes relationships that could form the basis for forecasting heat waves in California.
Observational work on heat wave activity in the California region shows that heat waves are
becoming more humid and expressed more strongly in nighttime temperatures. These changes
are undoubtedly having significant impacts on public health and energy demand, both its
magnitude and timing, as cooling is required more often at night and also more intensely and at
lower temperature thresholds during the day because people have less tolerance for (and,
especially in California, acclimatization to) humid heat than dry heat. Both the interannual and
long-term variability in California heat wave activity has been shown to be related to sea
surface temperature in the North Pacific and, especially, off the coast of Baja California. Can
skillful seasonal forecasts of heat wave activity in California be made based on Pacific sea
surface temperature (SST) patterns? Can the observed trends in California heat wave activity be
expected to continue? The main key to answering both questions appears to be in the
interannual and long-term behavior of sea surface temperatures off the coast of Baja California.

The frequency and magnitude of nighttime heat waves has clearly and steadily been on the rise
and the trend appears to be accelerating. Out of the largest 6 nighttime events occurring over
almost six decades between 1948 and 2006, 3 have occurred in the last six years. The heat wave
that spanned the second half of July 2006 reached a nighttime spatial extent of almost % of the
area, at its peak on July 23. Its overall nighttime magnitude was roughly twice that of the next
largest recorded nighttime event (July 2003) and its overall daytime magnitude was also
unprecedented, due particularly to the unusual combination of its duration and intensity.

The main factor that determines whether a heat wave will be primarily expressed in day or
nighttime temperatures is the availability of an anomalous moisture source upwind of the
synoptic circulation that converges hot surface air into the region. A warming SST trend east of
Baja California appears to have been instrumental in making this moisture source more readily
available. This SST trend is part of the global ocean surface and subsurface warming known to
be due to anthropogenic climate change. Important questions to be addressed by future studies
emerge. How much of the trend in BSST is caused by global warming? How strongly can it be
expected to continue? How much of the climb in nocturnal heat wave activity that are being
witnessed now over California and Nevada is a regional expression of a global process?
Answering these questions unequivocally is beyond the scope of this study and requires an
augmented set of tools including dynamical modeling. The authors intend to address these
questions in future studies. For now, it should be simply noted that the results presented here
are fully consistent with global warming and they do intuit a plausible scenario for future
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summertime heat wave activity in California: more, hotter, more extensive and durable humid
nighttime heat waves.

1.5 Climate-Driven Coherence in Interannual Variation in
Hydropower Resources

Hydropower is an important energy resource in the western United States, providing a
relatively inexpensive and renewable alternative to fossil fuel-based technologies such as
natural gas turbines. Hydropower resources in the western United States are strongly coupled
to cool season precipitation variability, which explains approximately 85 percent of the variance
in annual stream flow in the Columbia River basin (PNW), 90 percent of the variance in the
Sacramento San Joaquin (SSJ) basins, and 55 percent of the variance in the Colorado River basin
(CRB). Persistent changes in cool season precipitation variability have been observed since the
mid-1970s, and include increased variance, coefficient of variation, lagl autocorrelation, and
inter-regional covariation. Changes in warm season precipitation, by comparison, are most
evident in increased lagl autocorrelation since the mid-1970s.

Using long term temperature and precipitation data sets from 1916-2003 to drive the Variable
Infiltration Capacity hydrologic simulation model, monthly stream flows from 1916-2003 were
simulated at a number of river locations which in turn were used to drive three reservoir
simulation models for the Columbia River basin, Sacramento San Joaquin basins, and Colorado
River basin. Despite differences in climate and water resources infrastructure and management
in the three regions examined, changes in stream flow and hydropower variability since the
1970s have largely mirrored changes in cool season precipitation variability. These changes
have increased vulnerability to energy shortages in the western U.S. because droughts since the
mid-1970s have tended to be longer and more intense, and more coincident from region to
region. Similar changes are apparent for high flow conditions, when abundant hydropower
resources have been available west-wide.

Paleoclimatic records from 1858-1977 suggests that the observed pattern of variability from
1977-2003 is unusual in the context of natural variability over the past 150 years or so. Longer
paleoclimatic records for the Sacramento San Joaquin basins and Colorado River basin alone
show that similar episodes have occurred at most three times in the last 500 years, at roughly
200 year intervals. The changes in cool season precipitation variability, stream flow and
hydropower resources coincide with strong anthropogenically forced warming at the global
scale, however it remains to be seen if these changes are systematic and physically related to
global warming in some way, or if they are simply a temporary feature of natural variations in
precipitation that have been unusual in the earlier parts of the 20th century record. If these
changes are in fact systematic in nature, ongoing changes in energy and water management to
cope with the altered variability may be needed.

1.6 Stakeholder Partnership: California Department of Water
Resources
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Water managers in the western United States have long faced the challenge of meeting a variety
of demands with limited and uncertain supplies. Seasonal climate outlooks offer the potential to
improve decision-making by extending the planning horizon for resource managers, yet the
value of these forecasts is largely untapped. Among the most cited barriers to their use are low
forecast skill, difficulties with interpretation, and lack of demonstrated application. This
research is aimed at improving the use and usability of National Oceanic and Atmospheric
Administration seasonal forecast information through a case study involving California’s
Department of Water Resources (DWR), managers of water for the most populous state, largest
irrigated agricultural industry, and arguably, most publicized conflicts over water allocation in
the country.

This project addressed the following science and applications questions:

e How can National Oceanic and Atmospheric Administration climate forecast products
be effectively translated and integrated into decision-making to reduce the vulnerability
and impacts of drought? How can seasonal climate forecasts result in improved
seasonal stream flow forecasts and in turn more efficient water management?

e How can a process of working with stakeholders be developed that will help to promote
the integration of forecast information into decision-making? How can the gap between
forecasts and their potential beneficial uses be more effectively bridged through a
process of understanding socio-organizational factors, opportunities and barriers?

Building upon previous and ongoing research funded by National Oceanic and Atmospheric
Administration, this project focused on the transition of these products to operations, and the
evaluation of their potential benefits in decision-making, rather than solely the development of
new technologies.

This research produced results in two main categories. First, a comprehensive statistical
analysis was conducted of climate forecast skill and correlation with water year classification
systems. Second, collaborative relationships were established with DWR, and identified the
types of decisions and decision-makers that could potentially benefit from these forecasts.

1.7 Summary

Seasonal forecasts and historical data can be used to support integrated regional scenario
analyses. Analyses of historical experience with maximum temperatures, heat waves and
stream flow indicate that relationships with climatic provide conditional forecasts on seasonal
time scales that can support planning and scenario analyses for the energy sector in the western
United States.
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CHAPTER 2:
Compiling Regional Indices of Electricity Demand

Detailed electrical load data are generally proprietary and not publicly available. For the
studies described herein, the authors needed credible indices of western U.S. electricity demand
that could be used to demonstrate the utility of climate applications. In the following section
the authors describe how suitable indices from FERC 714 reports were derived. The authors
recognize that models based on more detailed, proprietary data may better suit the needs of
individual energy utilities and others who may find the tools presented here of interest. Our
intention here is to provide examples with publicly available data that could be adapted by
utilities and other users to suit their individual needs, using their own proprietary data sources.

2.1 Data Sources and Limitations

FERC 714 data provide a publicly available source of hourly load data, but they are not without
challenges. Large, discrete elements of electrical load can shift from one reporting area to
another without documentation. In addition, the 2000 energy crisis in California led to changes
that affected reporting in 2000 and subsequently. In order to get a “clean” data set that could be
used to estimate load profiles and temperature sensitivity of load, the authors constrained our
sample to FERC 714 reports from 1993 — 1999 (this dealt with the energy crisis effects by
excluding them). Some utilities with problems apparent in their data or incomplete reporting
were excluded. Hourly loads were aggregated by subregion (this dealt with localized shifts in
loads across reporting areas). Utilities used in subregional aggregations are reported in Table
2.1.1.

A daily time series that could serve as an index of daily, seasonal, and interannual variability in
load was derived from the hourly subregional data by taking the daily maximum aggregate
load for each subregion and detrending and scaling it. Trends observed in the data were
assumed to result from growth in demand due to changes in population, demography,
development, and so forth. While there has been a pronounced trend in temperature in the
western U.S. in recent decades, the authors did not think it was relevant within the 1993 - 1999
sample.
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Table 2.1.1: WECC Utilities Used to Estimate Regional Electric Load Temperature Sensitivities

Northwest:

Bonneville Power Administration

British Columbia Hydro and Power Authority
Public Utility District No 1 of Chelan County
Public Utility District No 1 of Douglas County
Eugene Water and Electric Board

Public Utility District No 1 of Grant County
Idaho Power Company

Pacificorp

Portland General Electric

Seattle Department of Lighting

Northern CA:

Northern California Power Agency
Sacramento Municipal Water District
Turlock Irrigation District

Western Area Power Administration - SAC

Southern CA:

City of Burbank Public Service Department
City of Glendale Public Service Department
Imperial Irrigation District

Los Angeles Department of Water and Power
Modesto Irrigation District

Metropolitan Water District

City of Pasadena

Pacific Gas and Electric

Southern California Edison

San Diego Gas and Electric

City of Vernon

Southwest:

Arizona Electric Power

Arizona Public Service

Black Hills Power and Light Company
Colorado Springs Utility

Deseret Generation and Transmission Company
El Paso Electric

City of Farmington

Montana Power Company

Nevada Power Company

Public Service Company New Mexico

Sierra Pacific Power Company

Salt River Project

Tucson Electric Power Company

Utah Association of Municipal Power Systems
Utah Municipal Power Agency

Western Area Power Administration

West Plains Energy
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Figure 2.1.1: Raw Maximum Daily Loads Aggregated by Subregion
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2.2 Spatial Domain and Imprecision

The four indices of electrical demand described here, for subregions loosely described as the
Northwest, Northern California, Southern California, and the Southwest, are largely
comprehensive for the regional energy grid that comprises the western United States and
western Canada. While links to other regions exist, most of the energy consumed within this
region is also generated within the region.

The Northwest region corresponds to Washington, Oregon, Idaho, and south-western Canada.
The Northern California and Southern California regions split California at the northern Kern
county line, at North latitude. The Southwest region includes the southwestern states of
Arizona and New Mexico, as well as Nevada, Utah, Colorado, Wyoming, and Montana.

15



The FERC 714 data used here are aggregated by service area. These service areas can be quite
large. Consequently, it is not feasible to use these data to describe electrical loads (or inferred
electrical demand) at much higher spatial resolutions than the coarse scale of the four
subregions used here. The ‘Southwest’ subregion could probably be broken up into two or
more smaller subregions, but our analytical emphasis was on California and its interactions
with the western grid, so the authors for greater simplicity and used four regions.

Furthermore, some service areas extend across two or more of our subregions. Even where
individual service areas are well-defined and contained within one of our four subregions, they
are linked to the western electricity grid. Electricity generated within a service area is not
necessarily consumed within that service area, and vice versa. On the other hand, transmission
capacity is, at key points, a binding constraint, limiting, for example, the current potential to
transfer electricity generated in the Northwest to users in California. The researchers did not
attempt to precisely define the effects of these transfers on the indices, but rather accept that
they are approximate, imprecise indicators of both electrical load and, by inference, electrical
demand in each subregion.

2.3 Temporal Coverage and Resolution

FERC 714 data provide hourly loads by service area. These were aggregated to provide daily
maximum load time series for each subregion. The climatological data comparing these are
mostly daily data, although some seasonal climatic indices are also employed.

As mentioned above, the FERC load data used here are for the seven years from 1993 to 1999.
While it would be nice to have a longer load data time series to work with, there are some
advantages to limiting ourselves to a shorter sample like this. To use a longer series, issues like
the 2000 energy crisis, as well as more dramatic changes in demography, population, and end
use technologies would have to be dealt with, and the authors would also need to disentangle
effects of trends in these variables from possible trend effects due to climate.

2.4 Selecting Representative Series

Because load data for some service areas was not suitable for inclusion in the subregional
aggregates due to data quality concerns or missing data, these indices do not yield the total
actual electrical load for each region, but rather indices which are assumed to be highly
correlated with variations in both actual electrical load and electricity demand. Thus they are
suitable for climatological analysis, but additional data have to be employed to scale these
indices to actual regional load or demand. Henceforth, references to electricity demand refer to
these maximum daily load indices derived from FERC 714 reports. For example,, ‘load” and
‘demand’ are in some cases used interchangeably, although, strictly speaking, the authors do
not have any direct data on electricity demand.
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2.5 Detrending and Scaling

Because trends in both mean and variance were identified, the authors detrended the daily
maximum loads by dividing by the trend, rather than subtracting the trend (Figure 2.1.2'). This
served to effectively detrend both mean and variance. The resulting time series were
subsequently scaled by subtracting the mean and dividing by the standard deviation to
generate equivalent indices for each region, since the level of the load indicated by these indices
is meaningless.
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CHAPTER 3:
Modeling Load Sensitivity to Temperature

Our working hypothesis is that variability in maximum daily electricity load is primarily driven
by (1) variability in temperature and (2) calendar effects unrelated to climate (weekends and
holidays). In the following the authors estimate models for maximum daily electricity load for
each subregion as functions of these two factors.

These models are useful for motivating interest in temperature forecasts. That is, if the
relationship between temperature and electrical load can be shown to be strong, then skillful
forecasts of temperature may be useful for planning related to electricity generation and
demand management. In subsequent sections the authors address the skill and form of
potentially useful temperature forecasts.

These models are also a key ingredient for modeling the effects of climatic variations on the
western energy grid. In a subsequent section the authors describe modifications to the WECC
electrical grid model for a 2004 summer planning scenario to allow analyses of the effects of
various scenarios for both temperature and stream flow.

3.1 Max Daily Load Versus Max Temperature

For this and other applications described in this report, a long-term daily-time-step gridded
temperature data set (Hamlet and Lettenmaier 2005) is used. While only 7 years of load data
were employed, using a long-term temperature data set to create four subregional daily
maximum temperature indices from 1950 — 2003 facilitated production of experimental
temperature forecast products and models compatible with our load-temperature model.

Daily maximum temperature indices were constructed for each subregion by taking the average
of gridded daily maximum temperatures over each subregion.

3.2 Weekend/Holiday Effects

Researchers created a dummy variable for weekends versus workweek days. No attempt was
made to include holiday effects. Including holidays would likely marginally improve the fit of
the model.

3.3 Non-Linearity

The relationship between temperature and electrical load is not linear. That is, load tends to
increase with temperature above a certain threshold (for example, loads are higher on hot days),
and to decrease with temperature below a certain threshold (loads are higher cold days), and
the slope is not constant. Thus, there is a need to account for nonlinearity in our model.
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3.4 Non-Normality

Standard ordinary least squares (OLS) regression model methods are not appropriate here
because our data are not normally distributed. In particular, the standard assumption is that
the errors (residuals) in an OLS regression model are normally distributed, whereas in this case
they are highly skewed (the probability distribution describing the residuals is not symmetric
about the mean) and leptokutic (the peak of the distribution is more acute and tails are fatter
than in a normal distribution).

3.5 Estimating Nonlinear Regression with Skewed, Leptokurtic
Residuals

The open source statistical package R (http://www.r-project.org) was used to estimate a
nonlinear regression model with skewed, leptokurtic residuals. The authors use semi-
parametric smooth functions (piecewise polynomials) available in the base statistical module in

R to determine nonlinear basis functions for temperature. Once the basis functions are
determined, any linear regression routine can be used because the regression model is linear in
the new expanded temperature variable.

To fit a model with skewed, leptokurtic residuals, the authors used the sn (‘skew-normal’)
library in R. The sn library has a module st.mle() that estimates linear regressions with skew-t
distributed errors using maximum likelihood methods. The skew-t distribution is a student’s t-
distribution that has been extended by Azzalini and Capitanio (2003) via the introduction of a
shape parameter which regulates skewness.

Using just the polynomial transformation of temperature and a factor for weekend versus
workweek days, the authors estimated regression models that accounted for most of the
variability in maximum daily load in each subregion:

Table 3.5.1: R-Squared for Maximum Daily Load Regressed on
Maximum Daily Temperature and Weekday

NW NC SC SW

R2 0.9 0.8 0.82 0.9

All of these R2 values are highly significant with p-values < 0.001

3.6 Discussion

The skew-t error model is generally a good fit to these data (Figure 3.6.3). The right tail of the
observed error distribution in Northern California appears to be somewhat fatter than the
modeled distribution. This is also true, to a much lesser extent, in Southern California. This is
due to the larger scatter in load apparent at high temperatures in Northern and Southern
California.

The authors conjecture that this may be due to effects of power transfers on reported loads in
California. For example,, accounting for constraints on cheaper power available for import to
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Northern and Southern California on days with observed high temperatures might improve our
model specification.

Other possible improvements include accounting for separately for holidays, and weighting
temperatures by population. Currently, temperature indices equally weight each grid point
within a subregion. If temperatures were instead weighted by the proportion of each
subregion’ s population located in each grid cell, the temperature indices might yield an
improved fit with observed loads. However, holidays account for relatively few days, and
temperatures are highly correlated across the spatial scales represented by one subregion, so
these improvements would probably be marginal, while the models shown here are highly
significant predictors of maximum daily load.
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Figure 3.6.1: Load-Temperature Models-Points Show Maximum Daily Load Plotted Versus
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Figure 3.6.2: Histograms of Residuals from Load-Temperature Regression Models
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Figure 3.6.3: Q-Q Plots for Skew-T Regressions of
Electrical Load on Temperature
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CHAPTER 4:
Forecasting Maximum Daily Temperature at Seasonal
Lead Times

Recent research has made substantial progress in developing models capable of forecasting
temperatures at seasonal lead times with significant skill. These forecasts have been for
specified percentiles of temperature (such as mean (50t percentile), 90t percentile, maximum
(100t percentile) and so forth) sampled over some historical reference period (see for example
Alfaro et al 2004 and 2006). These forecasts can be spatially explicit (as in Alfaro et al) for
gridded or station temperatures, or aggregated over a region.

The form of these forecasts is not well-suited to energy system planning and management
applications, because they result typically in one number for an entire season. A manager
planning operations for a continuously operated system with daily, hourly and shorter decision
time horizons might need some method to ‘downscale’ a seasonal average into useful
information about daily temperatures to make practical use of such a forecast, which might
prove as or more challenging a task than producing the original forecast in the first place.

In this work, the authors examine the potential for fitting statistical probability models to
maximum daily temperature data, and then forecasting the parameters that describe those
models. If it is possible to forecast parameters describing daily maximum temperatures over a
season, planners can use these forecasts to assign probabilities to any given temperature
scenario of interest.

In the next sections the authors first review sources of statistical forecast skill and types of
temperature forecast models. This background material was used to introduce statistical
seasonal forecast, and then describe an example demonstrating a parametric approach to
forecasting summer temperatures in Northern California.

4.1 Background: Sources of Statistical Forecast Skill

Statistical forecast models for temperature and other climatic variables typically rely on four
sources of forecast skill: ‘climatology” (descriptions of known past experience), persistence,
observed Pacific sea surface temperatures, and simulated soil moistures. All four are briefly
described in following sections. Researchers attempted to exploit all of these in designing this
study’s model specifications.

4.1.1 Climatology

A climate forecast usually provides a description of expected outcomes conditional on
observations in the recent past. As an extreme case, a climatology can be thought of as a
forecast of the future climate system based on all available past observations. Such a forecast
might change gradually from year to year, as additional observations are incorporated into
parameters like the mean and variance that describe some aspect of the climate system.
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4.1.2 Persistence

A more useful forecast would be one that uses past associations between observations and
subsequent outcomes. In modeling western U.S. temperatures, a climate forecast might take
advantage of persistence in temperature trends; for example, warmer than average July’s tend
to be followed by warmer than average Augusts.

4.1.3 Pacific Sea Surface Temperatures

Pacific sea surface temperatures (SSTs) are useful for predicting temperature and precipitation
in California—and more generally, in western North America—because the oceans store heat,
and the pattern of surface temperature anomalies in the oceans influences subsequent weather
patterns, providing some predictive skill on seasonal time scales. The El Nino/La Nina cycle
(ENSO, for El Nino/Southern Oscillation) is an example of a well-known index describing
patterns in the spatial distribution of SST anomalies in the Pacific that is associated with
variability in climate in the western U.S. Scientists have observed that after an El Nino
develops—signified by warmer than average sea surface temperatures in the eastern equatorial
Pacific—above average rainfall and temperatures have often subsequently been experienced in
the U.S. Southwest (Dettinger et al 1998, Gershunov et al 1999). A climate forecast might
describe the likelihood of these outcomes conditional on an El Nino signal having been
observed (or not) in the Pacific.

Similarly, an index of lower-frequency variability in North Pacific SSTs, sometimes called the
Pacific Decadal Oscillation (PDO), is also associated with variability in precipitation and
temperature in western North America. When the PDO is above its long run average, El Nino
influences on climate in western North America tend to be stronger, and when the PDO is
below average, La Nina influences tend to be strongest (Dettinger et al 1998, Gershunov et al
1999).

4.1.4 Soil Moisture

Soil moisture is useful as a predictor of temperature because “particularly for non-arid inland
areas, a wet soil tends to depress the concurrent and subsequent monthly mean temperature,
while a drier-than-normal soil is favorable for higher-than-expected monthly means...” (Durre
et al 2000). Alfaro et al (2006) recently demonstrated that soil moistures are particularly useful
in predicting summer temperatures in parts of Northern California and the interior western
United States.

4.2 Background: Statistical Forecast Modeling Strategies

Statistical modeling methods for seasonal temperature and precipitation forecasts include
composites, regressions, and models derived using Principle Components Analysis (PCA) and
Canonical Correlation Analysis (CCA) (described below). The authors explored all three
approaches in designing our forecast model. Composites based on SST indices did not
demonstrate sufficient forecast skill. The CCA approach was productive, but required more
complexity and expense, in terms of computing time, than needed for forecasting four
subregional temperature indices. CCA models are best for forecasts with large numbers of
predictors and predictands, as with high resolution gridded temperature forecasts. The best
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approach was found to use regression models, with PCA analysis employed to summarize
some of the explanatory variables.

4.2.1 Composites

A composite forecast of temperature or precipitation uses a sub-sample of outcomes, where the
selection criterion is conditioned on antecedent observations. An example in Alfaro et al (2004)
looks at summer temperature outcomes in California conditional on PDO being above or below
normal. Typically, some aspect of the distribution of the variable of interest (such as mean,
median, minimum, maximum temperature) is described statistically conditional on an index
having observed values in an arbitrary range.

4.2.2 Regressions

The climatic variable of interest at a particular location can be modeled using some combination
of locally observed antecedent climate variables as predictors (such as soil moisture), including
leading values of the predictand (for a persistence or autoregressive model). In addition,
indices of regional climatic influences such as El Nino/Southern Oscillation (ENSO) and PDO
can also be included as predictors.

4.2.3 PCA and CCA

Because the climatic variables the authors wish to forecast—as well as the influences that
provide forecast skill —tend to be highly correlated spatially, a useful modeling approach is to
look for associations between persistent spatial patterns in the predictors and predictands. A
PCA is a good way to summarize the important spatial patterns in a variable observed over
many locations. It identifies a set of indices that when summed describe the variability in the
data set as a whole. If each location varies independently of the others, then the analysis would
produce a set of approximately equally significant indices that are equal in number to the
number of locations. In practice, because of the spatial correlation for temperature and
precipitation and related variables, a PCA for these typically produces just a few significant
indices that together describe a majority of their variability over time. These are often
associated with ENSO and PDO.

CCA provides a method for matching patterns in two data sets. It produces pairs of related
indices, one from each data set, that are correlated with each other within a pair, and
uncorrelated across pairs. A forecast can be constructed by first summarizing two large data
sets like north Pacific SSTs and maximum summer temperatures over the western U.S. by using
PCA on each data set to produce a small number of relevant indices for each, and then
conducting a CCA to derive statistical relationships between the two sets of indices. Good
examples of the application of this methodology to temperatures are Alfaro et al (2004 and
2006).

4.3 Background: Statistical Forecast Form

Temperature forecasts typically are for various arbitrary modes of the temperature probability
distribution (for example, mean, median, 95 percentile, maximum, minimum, and so forth).
These are non-parametric: the probability distribution function (PDF) is not parameterized and
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estimated. The benefit of this approach is that it avoids introducing additional error from an
imperfect model specification for the PDF. The drawbacks are primarily:

(1) The forecasts are not automatically probabilistic forecasts and researchers have to do
some resampling of the observations, and so forth, to attempt to describe the range of
likely outcomes given a particular forecast.

(2) For the part of the PDF that is of interest for a particular management application (for
example, extremes), there may be insufficient data available to reliably describe the
range of likely outcomes.

(3) Forecasting some arbitrary mode of the distribution is not as versatile as forecasting
the entire distribution function.

Researchers tested parameterizations for temperature PDFs. For estimating maximum
temperature PDFs at individual locations, skew normal specifications worked quite well. The
benefit of estimating a PDF is that you then have a very powerful tool that allows you to
precisely describe the probability of any outcome. The drawback of course is that if the
functional form chosen for the parameterization is not a good specification for the part of the
PDF that you care about for a management application, the precisely described probabilities
may not be accurate. For individual locations or subregions on the scale of, say, Northern
California, the work presented below indicates that the authors can specify a PDF and forecast
the parameters of interest. It would also be of interest to jointly forecast the probability of
extreme temperatures occurring simultaneously in different parts of the western U.S. as a
whole, and that has so far proven more difficult to do accurately.

4.4 Background: Forecast Validation and Skill

Forecast models were tested using leave-one-out cross-validation. That is, for the period of
record, a separate forecast model is estimated for each time step while withholding data from
that time step, producing a retrospective forecast for each time step that is representative of the
forecast accuracy that would pertain to an actual forecast for a future (not yet observed) time.

Forecast skill is described using both the cross-validated models” and the uncross-validated
model results.

In general, it is often the case that seasonal forecasts for climatic variables like temperature and
precipitation are better than climatology for high and low extreme forecasts, but not for
forecasts of near-average conditions. That is because some climatic influences that are
associated with the probability of extreme outcomes (such as specific combinations of ENSO
and PDO phases, or very low or high soil moistures) are observable prior to the season you
wish to forecast and tend to have strong persistence (depending on the season). In the absence
of these influences, the historical range of outcomes can be quite broad, and highly variable.

It would appear that forecasts based on SSTs are not as good for Temperature as they are for
Precipitation (see Gershunov et al 1999). SSTs seem to have the biggest influence on summer
temperatures along the Pacific coast, as compared to the interior west (Alfaro et al 2004, 2006).
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Within the interior west, the location where SSTs give you the most skill vary considerably for
maximum versus minimum temperatures (Alfaro 2006).

ENSO/PDO have the largest, most consistent impact on precipitation in the extreme Southwest
and Northwest, while the region in between is less predictable (Dettinger 1998, Gershunov et al
1999).

4.5 Parametric Probability Forecasts

Parametric probability forecasts for maximum daily temperature are well suited to planning
applications for energy management. The basic approach is to fit an appropriate probability
distribution to the temperature data being sought to forecast, and then to forecast the
distribution parameters at seasonal lead times. Rather than yielding one statistic to describe
temperature over an entire season, this approach allows planners to generate daily maximum
temperature samples for a coming season stochastically, and to assign probabilities to planning
scenarios of interest.

Like a climatology, the forecast distribution reflects our knowledge about the statistical
properties of temperatures observed in past seasons, while also incorporating a forecast
reflecting available knowledge regarding expected interannual variability in climate (for
example, a forecast based on persistence, sea surface temperatures, and soil moistur